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Abstract

In climate predictions, clouds are the leading source of uncertainty. This is partly because, to

simulate the fluid dynamics of climate over the entire globe, a large grid spacing must be used, so

clouds are a subgrid-scale parameterization rather than a resolved feature. Here, a framework is

investigated with finer grid spacing of O(1) or O(10) km so that some clouds are not subgrid-scale;

instead, clouds evolve on the numerical grid. This cloud evolution is achieved using stochastic

modeling. Hence the framework is idealized in the sense that the full fluid dynamics of cloud

circulations is still not resolved, and simplified vertical structures are used. Nevertheless, the fluid

dynamics model includes evolving clouds that interactively adjust in size, shape, lifetime, and re-

gional coverage. In addition, different cloud types are included with different roles in the climate

system, including deep convective clouds and also boundary-layer clouds such as shallow cumulus

and stratocumulus clouds. Other basic aspects of the idealized climate system are planetary-

scale circulations (e.g., Walker circulation) and radiation. With these ingredients (evolving clouds,

planetary-scale circulations, and radiation), the framework has the potential for idealized investi-

gations of climate change with interactive cloud–radiative feedback of individual clouds. Here, the

formulation of the model equations is presented, and numerical simulations are shown to illustrate

the model dynamics and climate change.
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I. INTRODUCTION

Global climate is influenced by both radiation and fluid dynamics. In the simplest models

of climate, radiative transfer alone can be used to illustrate basic principles, such as the

greenhouse effect due to carbon dioxide [1]. However, for more precise predictions of climate,

the combined effects of radiation and atmospheric/oceanic fluid dynamics are needed, as in,

for instance, contemporary global climate models (GCMs) [2, 3].

In GCM predictions of future climate change, the leading source of uncertainty is clouds

[4–7]. Clouds can potentially have either a cooling effect or a warming effect. By reflecting

solar radiation, clouds can have a cooling effect. On the other hand, clouds can absorb the

radiation that is emitted by the earth’s surface, and, in so doing, can produce a greenhouse

warming effect in much the same way as carbon dioxide. Furthermore, different types of

clouds (see Fig. 1) can have different effects on climate. For instance, shallow clouds near

the earth’s surface tend to have a greater cooling effect than warming effect. On the other

hand, the deep clouds of a thunderstorm have both cooling and warming effects, and the

cooling and warming effects can cancel each other and result in a near-zero impact on the

radiation budget.

Moreover, it is important to emphasize that the difficulty is not only the clouds themselves

but also their interaction with large-scale atmospheric fluid dynamics [2–7]. As illustrated in

Fig. 1, different cloud types are associated with different components of large-scale circula-

tions. For instance, deep convective clouds are associated with the ascending branch of the

Walker circulation, and shallow clouds are associated with the descending branch. Hence the

two phenomena—clouds and circulation—are inextricably linked, and uncertainties related

to clouds are also uncertainties related to cloud–circulation interactions.

To properly account for the effects of clouds on climate, one would like to perform numer-

ical simulations of atmospheric fluid dynamics. However, a major challenge is that clouds

and climate operate across a vast range of scales. In Fig. 1, the small-scale features include

shallow cumulus and stratocumulus clouds, which require a grid spacing of O(100) m or

O(10) m or smaller in large eddy simulations (LES) [9–12]. On the large scales, on the other

hand, is the Walker circulation, which spans scales of O(106) or O(107) m [13, 14]. For such a

vast range of scales, LES or cloud-resolving models (CRMs) are computationally expensive.

On a more limited scale, CRMs have been used to explore clouds, precipitation, and climate
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FIG. 1. Schematic diagram of cloud regimes and associated large-scale circulations. Deep convec-

tive clouds are associated with the ascending branch of the Walker circulation, and shallow clouds

are associated with the descending branch of the Walker circulation. From Ref. 8. Used with

permission.

change, although typically only over a limited area on regional scales and not including

large-scale circulations [15–18]. If restricted to 2D, a CRM could go as far as to simulate a

Walker circulation and deep convection [19], although to also resolve stratocumulus clouds

would be computationally expensive. Typically, to include large-scale circulations such as

the Walker circulation, GCMs can be used, although the grid spacing is typically O(104)

or O(105) m, which is too large to resolve individual clouds, so clouds are parameterized

as a subgrid-scale process [2, 3] or resolved on fine scales as part of a multi-scale modeling

framework [20]. In summary, due to computational expense, it is difficult to simultaneously

simulate the full range of important scales in Fig. 1, from large-scale circulations to the

individual cloud features of shallow clouds such as stratocumulus clouds.

The goal of the present paper is to investigate another modeling framework, in addition

to LES, CRMs, and GCMs, as a way of potentially simulating both large-scale circulations

and shallow clouds such as stratocumulus clouds. The idea is to use a stochastic model

for the spatiotemporal variability of clouds. Example snapshots from stochastic models are

shown in Figs. 2 and 3 for deep convective and shallow clouds, respectively, to illustrate the

level of statistical realism. Many cloud statistics can be simulated by stochastic models [21–

25], including different regimes of shallow clouds such as stratocumulus clouds, which have

3



FIG. 2. Comparison of precipitation from (a) observational data and (b) stochastic model. Note

that a stochastic model will not reproduce the exact same locations of individual cloud clusters in

observational data on a particular day. The statistics, though, can be compared and are similar

(in terms of, for instance, power spectral density and the pdf of cloud cluster area). From Ref. 21.

© American Meteorological Society. Used with permission.

been identified as the main contributor to cloud feedback uncertainties in GCM climate

predictions [6]. Here, a stochastic model for shallow clouds [22] will be combined with

a model for deep convection and large-scale atmospheric fluid dynamics [26–32], thereby

encompassing the phenomena in Fig. 1, from shallow clouds on small scales to the Walker

circulation on large scales.

A significant computational savings can be achieved by using stochastic models instead of

LES. The computational savings comes in part from an increase in horizontal grid spacing,

since LES of stratocumulus clouds would require a horizontal grid spacing of O(10) or O(100)

m, whereas the stochastic models can use a horizontal grid spacing of O(103) or O(104) m.

In addition, the vertical grid also provides a significant computational savings, since LES of

stratocumulus clouds would require a vertical grid spacing of O(10) or O(100) m, whereas

the stochastic models use simplified vertical structures, as illustrated in Fig. 4. The vertical

structures in Fig. 4 arise from a Sturm–Liouville problem from the equations for atmospheric
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FIG. 3. Stochastic model representation [panels (e)–(h)] of four types of shallow cloud organization,

as seen from satellite in panels (a)–(d). Yellow lines indicate areas of 5◦ longitude by 5◦ latitude.

The model domain size is also 5◦ by 5◦. From Ref. 22. Used with permission.

fluid dynamics [33, 34], and they are also the basic vertical structures associated with the

deep convective clouds and Walker circulation in Fig. 1. As a result of the simplified vertical

structure, the stochastic models have a computational grid with the number of dimensions

reduced by one, from a three-dimensional (3D) grid to a two-dimensional (2D) grid.

With atmospheric fluid dynamics partially represented, the present framework is inter-

mediate in complexity between, on the one hand, LES/CRM/GCM frameworks, and, on the

other hand, simplified models such as two-box models that do not resolve detailed structures

of atmospheric circulations (see Refs. 35 and 36 and references therein). While a two-box

model can represent the widths of entire regions (such as one single grid box for the entire

ascending branch of the Walker circulation and another grid box for the descending branch),

the present framework can furthermore represent individual cloud clusters within those re-

gions. It is also possible, within LES/CRM/GCM frameworks, to simulate both shallow

clouds and large-scale circulations by using mesh refinement or grid stretching, which has
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FIG. 4. Schematic diagram of the vertical structures of the atmospheric model variables. The height

labels s, t, and m correspond to the surface of the earth, the top of the atmospheric boundary

layer, and the mid-troposphere. Adapted from Ref. 41. © American Meteorological Society. Used

with permission.

been explored in a variety of different configurations [37–40], although at significant com-

putational expense. While the present stochastic framework is idealized in comparison to

LES/CRM/GCM frameworks, the stochastic framework brings a large computational sav-

ings that can be invested in, for instance, faster exploration of parameter space and larger

ensembles of simulations.

In the remainder of the paper, the model is described in section II, numerical simulations

are presented in section III, and conclusions are summarized in section IV.
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II. MODEL DESCRIPTION

In this section, the model equations are described. The basic components of the fluid

dynamics are similar to other models [26–32, 41–46] that have used simplified vertical struc-

tures as in Fig. 4. The main new aspect here is the inclusion of stochasticity as in recent

work [21–25] so that the stochastic models for shallow clouds and cloud clusters are extended

to be coupled with radiation and large-scale atmospheric fluid dynamics.

In what follows, the model variables are described in section II A; the evolution equations

are described in sections II B, II C, and II D, for the free troposphere, boundary layer, and

ocean, respectively; and the numerical methods are described in section II E.

A. Variables and vertical structures

The model variables will have simplified vertical structures, as illustrated in Fig. 4, which

brings a substantial savings in computational cost. Note that the functional form of the

vertical structures arises systematically from a Sturm–Liouville problem [33], and the sim-

plification (and computational savings) comes from using a superposition of only two vertical

modes rather than an infinite sum of vertical modes.

The form of the vertical structures can be derived from a Sturm–Liouville problem asso-

ciated with the linearized evolution equations,

∂uf
∂t

+
∂pf
∂x

= 0, (1)

∂vf
∂t

+
∂pf
∂y

= 0, (2)

∂pf
∂z

= g
θf

θreff

, (3)

∂uf
∂x

+
∂vf
∂y

+
∂wf
∂z

= 0, (4)

∂θf
∂t

+ wf
∂θbg
∂z

= 0, (5)

∂rf
∂t

+ wf
∂rbg
∂z

= 0. (6)

The subscript f indicates that the variables are associated with the free troposphere, where

the components of the velocity vector are uf , vf ), and wf , and the other variables are the

(scaled) pressure pf , potential temperature θf , and water vapor mixing ratio qf . The equa-
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tions in (1)–(6) are a linearization of the hydrostatic Boussinesq equations, also known as

the primitive equations. Evolution equations will be discussed in further detail below. For

the moment, the evolution equations are introduced in (1)–(6) to explain the form of the

vertical structures. In particular, in seeking solutions of (1)–(6) based on separation of

variables, a Sturm–Liouvile problem arises for the vertical structures [33]. Let Gj(z), for

j = 0, 1, 2, 3, · · · , denote the vertical basis functions that arise from the Sturm–Liouville

problem. A generic variable φ(x, y, z, t) can then be expressed as an infinite series as

φ(x, y, z, t) =
∞∑
j=0

φj(x, y, t)Gj(z), (7)

where the functions φj(x, y, t) are the expansion coefficients. For simplified models, it is

common to truncate the infinite series after the first terms as, for instance,

φ(x, y, z, t) ≈ φ0(x, y, t)G0(z) + φ1(x, y, t)G1(z). (8)

These first two terms are called the barotropic mode and the first baroclinic mode, respec-

tively. It is common to consider such a truncation since it embodies the essential features of

atmospheric circulations [26–28, 47–51] and since the first terms contain the most variability

based on observational data analyses [52, 53]. For a Boussinesq system, the basis functions

Gj(z) are sines and cosines [33], as described in further detail next.

In the free troposphere, the three-dimensional velocity vector is partitioned into its two-

dimensional horizontal component, uf = (uf , vf ), and its vertical component, wf , with

subscript f to denote the free troposphere. For velocity, the expansion from (8) takes the

form

uf (x, y, z, t) = u0(x, y, t) + u1(x, y, t)
√

2 cos
πz

HT

, (9)

wf (x, y, z, t) = w0(x, y, t)(HT − z) + w1(x, y, t)
√

2 sin
πz

HT

, (10)

where HT is the depth of the troposphere, and the vertical structures are shown in Fig. 4.

For a Boussinesq system, the incompressibility condition of ∂xuf + ∂yvf + ∂zwf = 0 leads to

the relationships

w0 = ∂xu0 + ∂yv0, w1 = −HT

π
(∂xu1 + ∂yv1). (11)

If an anelastic atmosphere is assumed instead of Boussinesq, then the vertical gradient of

density is taken into account, and the vertical structures have a more complicated form [26],
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FIG. 5. Illustrations of circulation cells that arise from the vertical structures from Fig. 4. Top:

A deep circulation cell arises from u1 and w1. Gray shading indicates deep convective clouds

associated with upward motion, as in the Walker circulation cells of Fig. 1. Bottom: Boundary-

layer convergence from ub can create a circulation cell in concert with free-tropospheric, barotropic

u0, w0. Bottom panel is from Ref. 41. © American Meteorological Society. Used with permission.

although in either case the basic features are the same. One could include additional basis

functions [29, 34], such as sin(2πz/HT ) or sin(3πz/HT ), etc., beyond the first baroclinic

mode structure sin(πz/HT ) used here, but the largest amount of atmospheric variance is in

the first baroclinic mode [52]. As an illustration, if the velocity structures in (9)–(10) are

plotted as vector fields, then a sinusoidal variation in x will produce a circulation cell as

shown in Fig. 5. The deep circulation cell in Fig. 5 is similar to the Walker circulation cells

from Fig. 1, which indicates that the simple vertical structures in (9)–(10) are sufficient to

capture the basic aspects of deep convection and atmospheric circulations.

The thermodynamic variables in the free troposphere are the potential temperature, θf ,

9



and the water vapor mixing ratio, rf . Their structures take the form

θf (x, y, z, t) = θreff + θbg(z) + θ1(x, y, t)
√

2 sin
πz

HT

, (12)

rf (x, y, z, t) = r0(x, y, t)e
−z/Hq , (13)

which are similar to (9)–(10). In (12), θreff is a constant reference value, and θbg(z) is a

background profile, with θbg(0) = 0 and with dθbg/dz a positive constant. In (13), Hq is

a decay height for the moisture profile, and r0 is the value at the top of the boundary

layer, z = 0. Layer parameters and thermodynamic parameters are listed in Table I, and

parameter values of the background states are listed in Table II.

TABLE I. Layer parameters and thermodynamic parameters

parameters value unit description

HT 16000 m Tropopause height

hb 500 m Atmospheric boundary layer thickness

ho 10 m Ocean mixed layer thickness

ρo 1000 kg/m3 Density of ocean water

ρb 0.885 kg/m3 Density of boundary layer air

ρf 0.37 kg/m3 Density of free troposphere air

co 4148 J/kg/K Heat capacity of ocean water

cp 1005 J/kg/K Heat capacity of dry air

Rd 287 J/kg/K Gas constant of dry air

Lv 2.4× 106 J/kg Latent heat of vaporization

In addition to the mixing ratio rf , it is also sometimes convenient to work with the

column water vapor (CWV), which we denote by qf and define as

qf (x, y, t) =
ρf
ρo

∫ HT

0

rf (x, y, z, t) dz, (14)

which is the integral of the mixing ratio over the atmospheric column. The density ρf is

the average density of the atmosphere in the free troposphere, and it could be replaced by

a height-dependent ρ̃(z) and brought inside the integrand, although the version in (14) will

serve the present purposes. The parameter ρo is the density of liquid water (or ocean water),
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TABLE II. Parameters of background states

parameters value unit description

Hq 2000 m Free troposphere moisture scale

Q0 3.848× 10−2 m Background moisture stratification

Q1 5.328× 10−3 m Background barotropic vertical moisture advection

T 0
f 258.94 K Background temperature in Tf

T 1
f 0.6844 Linear dependency of θ1 in Tf

θreff 300 K Reference temperature in free troposphere

dθbg/dz 3 K km−1 Vertical gradient of background potential temperature

qb,sat,0 -270 mm Background column water vapor in qb,sat

qb,sat,1 1 mm/K Linear dependency of Tb in qb,sat

qf,sat,0 -228 mm Background column water vapor in qf,sat

qf,sat,1 1 mm/K Linear dependency of Tf in qf,sat

Fo 0.0556 K/day Forcing strength on ocean temperature

and one can see that (14) transforms rf with units of kg water per kg dry air (or kg kg−1

for short) to qf with units of mm. Physically, the CWV qf represents the height of liquid

water that would result if all water vapor in the column were condensed to liquid form.

Since both r0(x, y, t) from (13) and qf (x, y, t) from (14) will be useful in different contexts,

it is helpful to define the relationship between them. To do so, insert (13) into (14) to find

qf = HT Q̂0
ρf
ρo
r0, with Q̂0 =

Hq

HT

(
1− exp(−HT/Hq)

)
. (15)

For short, we will sometimes refer to the water vapor mixing ratio (rf or r0) or the column

water vapor as simply the “water” or the “moisture.”

In addition to the potential temperature θf , it is also useful to define other temperature

quantities. The temperature itself will be denoted by T totf to indicate that it is the total tem-

perature as opposed to an anomaly, and it is related, by definition, to potential temperature

via

T totf (x, y, z, t) = θf (x, y, z, t) ·
(
p̃(z)

p0

)Rd/cp

(16)

where Rd is the gas constant for dry air, cp is the specific heat at constant pressure, p̃(z) is

the background pressure profile, and p0 is a reference pressure that is taken to be the surface
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pressure—i.e., p0 = p̃f (0).

For later use with radiative transfer, with simplified vertical structures, it is convenient

to define the mass average of the temperature in the free troposphere, which we will call Tf :

Tf =
1∫ HT

0
ρ̃(z)dz

∫ HT

0

T totf (x, y, z, t)ρ̃(z)dz = T 0
f + T 1

f · θ1. (17)

In the second equality above, the mass-averaged temperature Tf has been related to the

first-baroclinic-mode potential temperature θ1, by evaluating the integral in (17) and using

(16) and (12); the constants T 0
f and T 1

f arise from the integration. This relationship will be

useful later in moving between the variable θ1, which is useful for the fluid dynamics, and

the variable Tf , which is useful for radiative transfer. One other temperature quantity that

will be of use later is the equivalent potential temperature,

θef (x, y, z, t) =

(
T totf (x, y, z, t) +

Lv
cp
rf (x, y, z, t)

)(
p0
p̃(z)

)Rd/cp

, (18)

where the subscript f indicates that θef is the value of θe within the free troposphere. In

(18), we use a linearization of the exponential function that arises in the more comprehensive

definition of θe ≈ θ exp[Lvqv/(cpT )] [8], since the linearization allows simpler transformations

between the variables θef , T
tot
f , and rf , and is reasonably accurate for present purposes. Of

use later on is the value of θef at the top of the boundary layer,

θ0ef (x, y, t) = θreff +
L̃fv
cp
Q̂−10 qf , with L̃fv =

Lvρo
HTρf

, (19)

which arises from (18) by evaluating at z = 0.

In the boundary layer, all variables are height-averaged and therefore independent of

height, as illustrated in Fig. 4. The one exception is the vertical velocity, wb, which is

linear-in-height:

wb(x, y, z, t) = −(z + hb)∇ · ub(x, y, t), (20)

where the horizontal divergence ∇ · ub appears here so that the velocity field satisfies the

divergence-free constraint:

∇ · ub +
∂wb
∂z

= 0. (21)

The thermodynamic variables in the boundary layer are analogous to their counterparts in

(12)–(18) from the free troposphere. Water will be partitioned into water vapor mixing ratio

rvb(x, y, t) and liquid water mixing ratio rlb(x, y, t), and their sum, the total water mixing
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ratio rtb(x, y, t), where the subscript b denotes the boundary layer. The boundary-layer

CWV and column total water are defined as

qvb(x, y, t) =
ρb
ρo

∫ 0

−hb
rvb(x, y, t) dz = hb

ρb
ρo
rvb(x, y, t),

qtb(x, y, t) =
ρb
ρo

∫ 0

−hb
rtb(x, y, t) dz = hb

ρb
ρo
rtb(x, y, t).

(22)

The temperature Tb, potential temperature θb, and equivalent potential temperature θeb are

related to each other via

Tb(x, y, t) = T refb + θb(x, y, t), (23)

θeb(x, y, t) =

(
Tb +

Lv
cp
rvb

)(
p0
pb

)Rd/cp

= Tb +
L̃bv
cp
qvb, (24)

where T refb = 300 K is a constant reference value of the atmospheric temperature near the

ocean surface, where we have used pb ≈ p0 in the θeb definition above, and where L̃bv is a scaled

latent heat in the boundary layer, with L̃bv = Lbv/hb and Lbv = Lv(ρo/ρb). The definitions for

the boundary layer in (22)–(24) are similar to (14)–(18) for the free troposphere.

The presence of clouds will be described by cloud indicator functions σf and σb for the

free troposphere and boundary layer, respectively. To define the presence of a cloud, we

compare the moisture value qf to a threshold value qf,sat and define

σf (x, y, t) = H(qf − qf,sat), σb(x, y, t) = H(qtb − qb,sat), (25)

where H(q) is the Heaviside function, so that H(q) = 1 if q ≥ 0 and H(q) = 0 if q < 0, and

where similar expressions are used above for both σf and σb. The threshold or saturation

values qb,sat and qf,sat are taken here to be linear functions of temperature:

qb,sat = qb,sat,0 + qb,sat,1Tb, qf,sat = qf,sat,0 + qf,sat,1Tf , (26)

where qb,sat,0, qb,sat,1, qf,sat,0, and qf,sat,1 are constant parameters. The use of saturation val-

ues that are linear in temperature can be viewed as a linearization of the type of saturation

mixing ratio that arises from the Clausius–Clapeyron equation of thermodynamics [54]. Al-

ternatively, since these cloud indicators are defined on somewhat large scales, the saturation

values could be viewed as empirical definitions that can be defined based on observational

data [55]. Note that the values of these parameters (qb,sat,0, qb,sat,1, qf,sat,0, and qf,sat,1) should

tacitly depend on other parameters, such as boundary-layer height hb and free troposphere

13



height HT , since qtb and qf are integrated over these heights, respectively. These cloud

indicators will act as nonlinear switches that turn on or off certain physical processes, such

as rainfall or cloud–radiation interactions, as described further below.

B. Evolution of free troposphere

Now that the variables have been described above in section II A, the dynamical equa-

tions of motion can be presented. The evolution equations for the free troposphere will be

described first, followed by the evolution equations for the boundary layer and ocean.

The dynamics of the free troposphere is given by

∂u1

∂t
− α1∇θ1 = − 1

τR
u1, (27)

∂θ1
∂t
− α2∇ ·

(
u1 −

√
2u0

)
= Sθ1 , (28)

for the first-baroclinic-mode velocity u1 and potential temperature θ1, and

∂qf
∂t

+∇ ·
(
Q1u1 −Q0u0

)
= Sqf (29)

for the free-tropospheric moisture. The barotropic velocity u0 will be described further below

due to its coupling with the boundary layer. In essence, (27)–(28) describes a shallow-water

system for u1(x, y, t) and θ1(x, y, t), and a similar type of equation for qf . Note that it is not

the same as the traditional, single-layer shallow water equations, but it has connection to

multi-mode or multi-layer shallow water equations, as mentioned further below. The fluid

flow will be driven by the heat source/sink Sθ1 , which is described further below and includes

cloud latent heating that is interactive and evolving based on individual cloud clusters.

The left-hand side of (27)–(29) is the dynamical core, and it can be derived from the

3D fluid dynamics equations as follows [26, 28, 29, 33, 34, 46]. The starting point is the
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hydrostatic primitive equations

∂uf
∂t

+
∂pf
∂x

= 0, (30)

∂vf
∂t

+
∂pf
∂y

= 0, (31)

∂pf
∂z

= g
θf

θreff

, (32)

∂θf
∂t

+ wf
∂θbg
∂z

= 0, (33)

∂rf
∂t

+ wf
∂rbg
∂z

= 0. (34)

Note that the hydrostatic assumption is a helpful assumption for deriving simplified equa-

tion sets although for grid spacings in the range of O(1) to O(10) km it may not be the

complete description of phenomena on the smallest model scales. Also note that nonlin-

ear advection terms have been neglected, while advection of the background state θbg(z)

is included, and advection of q has been linearized with respect to a background state

rbg(z) = r00 exp(−z/Hq). Nonlinear advection could possibly be included in the future

[28, 29, 34], although a careful investigation is still needed for the interactions of nonlinear

advection and stochasticity in the present type of framework, and numerical methods should

therefore be chosen appropriately. Nonlinear advection is presently represented statisti-

cally via the eddy diffusion and stochastic forcing in (29) as a parameterization of turbulent

advection–diffusion. Some other climate components that will be neglected in the idealized

simulations here are spherical geometry of Earth, rotation, and the diurnal cycle, although

these and other features could be added in the future.

To derive the shallow water system in (27)–(29), the vertical structures arise from a

Sturm–Liouville problem and were described in (9)–(14). It then follows from (12) and

from hydrostatic balance in (32) that the vertical structure of the (scaled) pressure is

pf (x, y, z, t) = pbg(z) + p0(x, y, t) + p1(x, y, t)
√

2 cos
πz

HT

, p1 = − g

θreff

HT

π
θ1. (35)

Then the evolution equations in (30)–(34) are projected onto the vertical structures from

the Sturm–Liouville problem using the inner product

〈f, g〉 =
1

HT

∫ HT

0

f(z)g(z) dz. (36)

Since the vertical structure functions in (9)–(12) are sines and cosines as in a Fourier series,

the projections and inner products are straightforward [28, 29, 33, 34, 46]. By projecting the
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momentum equations in (30)–(31) onto the basis function
√

2 cos(πz/HT ), one arrives at the

shallow-water momentum equations in (27) with α1 = gHT/(πθ
ref
f ) ≈ 170 m2 s−2 K−1. Sim-

ilarly, by projecting the θf evolution equation in (33) onto the basis function
√

2 sin(πz/HT ),

one arrives at the shallow-water θ1 equation in (28) with α2 = (HT/π)(dθbg/dz) ≈ 15 K,

where dθbg/dz = 3 K km−1 is assumed constant. Finally, for the moisture, the rf evolution

equation in (34) is projected onto a constant function in order to obtain the column water

vapor from (14); the result is the shallow-water moisture equation in (29) with

Q0 = −ρf
ρo

∫ HT

0

drbg
dz

(
HT − z

)
dz,

Q1 = −ρf
ρo

∫ HT

0

drbg
dz

HT

π

√
2 sin

πz

HT

dz,

(37)

where recall that rbg(z) = r00 exp(−z/Hq). The values of parameters Q0 and Q1 are listed

in Table II. Note that the system in (27)–(29) is not the traditional, single-layer shallow

water equations, but it can be viewed as one mode of multi-mode shallow water equations

if additional vertical basis functions are considered [34]. Also, this connection with shallow

water systems can be seen to arise because the primitive equations in (30)–(34) can be viewed

as a multi-layer shallow water system; see Ref. 56, chapter 2, sections 18 and 19. This

completes the derivation of the dynamical core on the left-hand side of the shallow-water-like

system in (27)–(29).

On the right-hand side of (27)–(29) are the source/sink terms, which are interactive and

evolving and defined as follows. In the momentum equation, the sink −u1/τR is a Rayleigh

damping term. In the moisture equation, the source/sink Sqf is defined as

Sqf = − 1

τq

[
qf − qf,sat(Tf )

]+
+
σb
τt

(
qtb − qf

hbρb
HTρf

Q̂−10

)
+ bq∇2qf +DfẆf , (38)

and the four terms represent precipitation from deep-convective clouds, a moisture source

from cloud-top mixing of boundary-layer clouds, eddy diffusion, and stochastic forcing, re-

spectively. The precipitation term includes a superscript + that indicates a nonlinear switch,

so that precipitation turns on only when qf exceeds the threshold value qf,sat, which is a func-

tion of temperature according to (17) and (26). The cloud-top mixing term is proportional to

the difference between the water content in the free troposphere and boundary layer, and the

cloud indicator σb is a coefficient that turns on cloud-top mixing only when boundary-layer

clouds are present. The eddy diffusion and stochastic forcing are a parameterization of turbu-

lent advection–diffusion [57–60] and are similar to earlier models of spatiotemporal stochastic
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TABLE III. Parameters of physical parameterizations

parameters value unit description

τs 6 hours Sensible heating time scale

τm 8 hours Momentum entrainment time scale

τq 12 hours Convection time scale

τt 6 days Cloud top mixing time scale

τe 6 days Sea surface evaporation time scale

τR 75 days Rayleigh drag time scale

Cd 0.025 Surface drag coefficient

Up 2 m/s Strength of turbulent coefficient

D̃b 3.67 m/
√

s Stochastic strength in qtb

D̃f 1.84 m/
√

s Stochastic strength in qf

bv 6.25× 102 m2/s Eddy viscosity

bT 6.25× 102 m2/s Eddy diffusivity in temperatures

bq 6.25× 105 m2/s Eddy diffusivity in moisture

clouds. The value of, for instance, the eddy moisture diffusivity bq may appear to be large

when written in units of m2 s−1, but it is more nearly O(1) in magnitude when written in

terms of equatorial synoptic scales, and its value was calibrated based on the power spec-

trum from observational data [21, 46]. The stochastic forcing Ẇf is a spatiotemporal white

noise with mean zero and covariance E[Ẇf (x, y, t)Ẇf (x
′, y′, t′)] = δ(x− x′)δ(y− y′)δ(t− t′),

or a discretized version as described below in section II E. The values of the parameters

from the source/sink terms are listed in Table III.

Note that parameters of various types have been defined here, ranging from fundamental

constants of nature such as cp and Lv in Table I to parameters from physical parameteriza-

tions in Table III. For the parameters that are related to physical parameterizations, such

as cloud and precipitation processes, the values of the parameters are chosen to be in line

with other studies and observational constraints (see, e.g., Refs. 22 and 36 and references

therein). Sensitivity studies have also been carried out for many of these parameters and

presented in other studies (e.g., Refs. 22 and 36), and some additional sensitivity studies are

presented below. While many parameters appear in the present idealized modeling frame-
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work, it is a relatively small number of parameters in comparison to comprehensive models

such as LES, CRMs, and GCMs, since comprehensive models account for additional aspects,

such as cloud microphysics and varying structures in the vertical direction, which require

additional parameters [2, 61].

As the last part of the shallow-water system, in the shallow-water equation for θ1 in (28),

the heat source/sink term is given by

Sθ1 =
π

2
√

2

hb
HT

σb
τt

(
θeb − θ0ef

)
− π

2
√

2

L̃fv
cp

σb
τt

(
qtb − qf

hbρb
HTρf

Q̂−10

)
+

1

τq
· L̃

f
v

cp

[
qf − qf,sat(Tf )

]+
+

1

Cf
Frad,f ,

(39)

where Cf = cpρfHT is a scaled version of the specific heat capacity. The first two terms

represent the effects of boundary layer cloud-top mixing of equivalent potential temperature

and water, respectively, defined below in section II C. The third term is the cloud latent

heating that is associated with precipitation in (29), and the coefficient L̃fv/cp is a latent

heating factor, defined above in (19). Note that no stochastic forcing term was included

for potential temperature in (39), for simplicity, whereas stochastic forcing was included for

moisture in (38); additional stochastic forcing terms could be included, although they would

increase the complexity of the model via the introduction of additional parameters and their

calibration, and prior work has suggested that the minimal addition of stochasticity to only

the moisture equation is sufficient for generating reasonable variability [46]. The fourth

term is radiative heating/cooling; it is given by

Frad,f = S(1− Afσf )asf + S(1− Afσf )(1− asf )asfAbσb

+ alfalbσT
4
b + alf (1− alb)σT 4

o − 2alfσT
4
f ,

(40)

and it is composed of five terms: absorption of downwelling solar radiation (∝ S), absorp-

tion of upwelling solar radiation that has reflected off of boundary layer clouds (∝ Sσb),

absorption of longwave radiation that was emitted by the boundary layer (∝ σT 4
b ) and

ocean (∝ σT 4
o ), and emission of longwave radiation (∝ σT 4

f ), respectively. The radiative

parameters are the solar constant S (averaged over a diurnal cycle); the Stefan–Boltzmann

constant σ; the albedos Af and Ab of deep convective and boundary layer clouds, respec-

tively; the shortwave absorptivities asf and asb of the free troposphere and boundary layer,

respectively; and the longwave absorptivities alf and alb of the free troposphere and bound-

ary layer, respectively. The physical interpretation of the first solar radiation term, for
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instance, is that it represents a fraction of S that is absorbed by the free troposphere, after

a fraction 1 − Afσf is reflected at cloud-top by deep convective clouds in the free tropo-

sphere. The absorptivity asf defines the fraction of incoming radiation that is absorbed by

the free troposphere. Further details of the radiation scheme are described in Ref. 36, which

has been extended here in a straightforward way to include the effects of an evolving free

troposphere and deep convective clouds.

Cloud–radiative feedbacks and water vapor feedback are included the radiation scheme in

(40). As mentioned above, Af and Ab are the albedos of deep convective and boundary layer

clouds, respectively. Notice that these albedos always appear along with cloud indicators as

Afσf and Abσb, so that cloud–radiative feedback is turned on only when a cloud is present.

Water vapor feedback is present in (40) through the absorptivities, alf and alb, which are

defined as

alf = a0lf + a1lf

[
qf
qf,sat

+ σf
(
1− qf

qf,sat

)]
,

alb = a0lb + a1lb

[
qvb
qb,sat

+ σb
(
1− qvb

qb,sat

)]
.

(41)

These absorptivities will increase when the water vapor content increases, since water vapor

is a greenhouse gas, and the effect is capped at a maximum value upon cloud formation.

The parameter values for radiation are listed in Table IV.

TABLE IV. Radiation parameters.

parameter value unit physical description

S 436 W m−2 Solar flux at top of free troposphere

σ 5.67× 10−8 W m−2 K−4 Stefan-Boltzmann constant

Ac 0.6 Albedo of shallow cloud

Af 0.4 Albedo of deep cloud

asb 0.1 Shortwave absorptivity of boundary layer

asf 0.25 Shortwave absorptivity of free troposphere

a0lb 0.24 Longwave absorptivity of boundary layer (dry air)

a1lb 0.66 Longwave absorptivity of boundary layer (water vapor)

a0lf 0.4 Longwave absorptivity of free troposphere (dry air)

a1lf 0.5 Longwave absorptivity of free troposphere (water vapor)
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C. Evolution of boundary layer and barotropic mode

For the atmospheric boundary layer, the velocity ub is coupled to the barotropic velocity

u0 of the free troposphere as

∂ub
∂t

+
1

ρref
∇pb = − σb

hbτt

(
ub − (u0 +

√
2u1)

)
− CdUp

hb
ub, (42)

∂u0

∂t
+

1

ρref
∇p0 =

σb
HT τt

(
ub − (u0 +

√
2u1)

)
, (43)

hb∇ · ub +HT∇ · u0 = 0, (44)

p0 = pb +
√

2θ1 +
π

2

hb
HT

θb, (45)

where θb is the anomalous potential temperature in the boundary layer. In this coupling,

divergence in the boundary layer is coupled with convergence in the barotropic mode in the

free troposphere, as defined in (44) and following earlier work [41, 42]. Also, as illustrated

in Fig. 4, at the top of the boundary layer, the vertical velocity is continuous. The pressure

relationship in (45) is also a continuity condition at the top of the boundary layer. Taken

together, the dynamical core of (42)–(45) involves two pressure variables, pb and p0, although

the pressure variables are related to each other, which leaves one pressure quantity to be

associated with the single incompressibility condition in (44). Also, recall from section II A

that all boundary-layer variables are depth-averaged and therefore are functions of x, y, and

t.

The source terms in (42)–(43) are related to mixing, drag, and dissipation. The surface

drag in the boundary layer is −(CdUp/hb)ub, where Up is a measure of turbulent velocity

strength and Cd is the non-dimensional surface drag coefficient. The source terms propor-

tional to σb are a representation of momentum entrainment at the top of the boundary layer.

They are functions of the difference in velocity between the boundary layer (ub) and the

bottom of the free troposphere (z = 0), where the velocity uf takes the value u0 +
√

2u1

and has contributions from both the baroclinic mode u1 and barotropic mode u0.

For the thermodynamic variable evolution in the boundary layer, two quantities are used:

total water mixing ratio qtb and equivalent potential temperature θeb. The evolution of qtb

is given by

∂qtb
∂t

=
1

τe

(
qb,sat(To)− qtb

)
− σb
τt

(
qtb −

hbρb
HTρf

qf · Q̂−10

)
+ bq∇2qtb +DbẆb. (46)
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FIG. 6. Schematic diagram of the physical processes related to the atmospheric boundary layer,

including interactions with the ocean, free troposphere, and radiation. From [36]. Used with

permission.

Fig. 6 is a schematic illustration of the physical processes of the boundary layer. The first

term on the right-hand side of (46) represents surface evaporation, and it is a source of

moisture for the boundary layer. The second term is proportional to σb and represents a

transfer of moisture from the boundary layer to the free troposphere via cloud-top mixing. It

is proportional to the difference in mixing ratio values between the boundary layer and free

troposphere at the top of the boundary layer (z = 0). This mixing term also introduced an

associated moistening term for the free troposphere in (38) and an associated cooling term

for the free troposphere in (39), under the assumption that boundary layer cloud liquid water

will evaporate upon mixing into the free troposphere. The last two terms on the right-hand

side of (46) are a stochastic representation of turbulent advection–diffusion of moisture, as

in Ref. 22 and also used for free tropospheric moisture in (29).

The evolution of the equivalent potential temperature in the boundary layer, θeb, is given

by

∂θeb
∂t

= −σb
τt

(
θeb − θ0ef

)
+

1

τs

(
To − θb

)
+

1

τe
· L̃

b
v

cp

(
qb,sat(To)− qtb

)
+

1

Cb
Frad,b, (47)

where Cb = cpρbhb is a scaled version of the specific heat capacity. The first term on the

right-hand side represents cloud-top mixing; it turns on only when a boundary layer cloud is

present (i.e., when σb = 1), and it is proportional to the difference between θeb and θ0ef , which

is the free-tropospheric value of equivalent potential temperature at the top of the boundary

layer (z = 0), as defined in (19). The second term is sensible heat transfer from the ocean,

and it is proportional to the difference between ocean temperature To and boundary-layer
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temperature or potential temperature θb. The third term is due to evaporation of water at

the ocean surface, as also included in (46), and where L̃bv = (Lv/hb)(ρo/ρb) here is a scaled

version of the latent heat of vaporization. The fourth term is due to radiation and is given

by

Frad,b = S(1− Afσf )(1− asf )(1− Abσb)asb + alfalbσT
4
f + albσT

4
o − 2albσT

4
b , (48)

with terms that are similar to the free tropospheric radiation terms in (40). In particular,

note that cloud feedbacks enter via Afσf and Abσb, and water vapor feedback enters through

the absorptivities alf and alb, which were defined in (41).

Note that the radiation scheme is formulated for simplicity in its definition, which is useful

for ease of understanding the details of the model formulation. On the other hand, the sim-

ple formulation brings complications for comparisons with other models, which commonly

use more comprehensive radiation schemes. For example, in climate-change experiments,

it is common to change the concentration of carbon dioxide, which may be straightforward

in a comprehensive radiation scheme, but which is less straightforward for a simplistic ra-

diation scheme as used here, where the concentration of carbon dioxide is represented in a

hitherto unspecified way through its influence on the absorptivity parameters alb and alf .

By specifying these types of relationships between physically observed quantities and model

parameters, one could pursue in the future a more quantitative comparison between the

present idealized framework and more comprehensive model results.

D. Evolution of ocean temperature

Finally, the ocean temperature evolves according to

∂To
∂t

= − 1

τe
· L̃

o
v

co

(
qb,sat(To)− qtb

)
− 1

τs
· Cb
Co

(
To − Tb

)
+ Fmerid,o +

1

Co
Frad,o, (49)

where L̃ov = Lv/ho is a scaled version of the latent heat of vaporization, and Co = coρoho

is a scaled version of the specific heat capacity. This type of model is sometimes called a

slab ocean model since it describes the oceanic mixed-layer as a slab that interacts thermo-

dynamically and radiatively with the atmosphere above it. A schematic diagram is shown

in Fig. 6 to illustrate the physical processes of the ocean and the atmospheric boundary

layer. The four terms on the right-hand side of (49) correspond to the physical processes of
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evaporation, sensible heat transfer, meridional heat transport, and radiation, respectively.

Evaporation and sensible heat transfer typically cause a loss of heat in the ocean, whereas

radiation is typically a heat source. The meridional heat transport is defined as

Fmerid,o = Fo sin
2πx

Lx
, (50)

where Lx is the length of the domain in the x direction, and the value of parameter Fo

is given in Table II. Following earlier work [62], the prescribed meridional heat transport

Fmerid,o is used to represent the effects of oceanic circulations in nature. The radiation term

takes the form

Frad,o = S(1− asf )(1− asb)(1− Afσf )(1− Abσb) + alf (1− alb)σT 4
f + albσT

4
b − σT 4

o , (51)

and it is composed of four terms: absorption of solar radiation (∝ S), absorption of longwave

radiation that was emitted by the free troposphere (∝ σT 4
f ) and boundary layer (∝ σT 4

b ),

and emission of longwave radiation (∝ σT 4
o ), respectively. The physical interpretation of

the solar radiation term, for instance, is that it represents a fraction of S that reaches the

ocean surface, after a fraction 1 − Afσf is reflected by deep convective clouds in the free

troposphere, a fraction 1 − asf is absorbed by the free troposphere, a fraction 1 − Abσb is

reflected by boundary layer clouds, and a fraction 1 − asb is absorbed by the atmospheric

boundary layer. Further details of the radiation scheme are described in Ref. 36, which

has been extended here in a straightforward way to include the effects of an evolving free

troposphere and deep convective clouds.

E. Numerical methods

The evolution equations of the model are (27)–(29), (42)–(45), (46), (47), and (49), and

they are solved numerically using an operator splitting method. The splitting involves three
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parts. The first part is the fluid dynamical core, which is

∂u1

∂t
− α1∇θ1 = − 1

τR
u1, (52)

∂θ1
∂t
− α2∇ ·

(
u1 −

√
2u0

)
= 0, (53)

∂qf
∂t

+∇ ·
(
Q1u1 −Q0u0

)
= 0 (54)

∂ub
∂t

+
1

ρref
∇pb = −CdUp

hb
ub, (55)

∂u0

∂t
+

1

ρref
∇p0 = 0, (56)

hb∇ · ub +HT∇ · u0 = 0, (57)

p0 = pb +
√

2θ1 +
π

2

hb
HT

θb, (58)

with qtb, θeb, and To held fixed. This fluid dynamical core is a linear, constant–coefficient

system, and it can be solved semi-analytically using the Fourier transform. It is semi-

analytical rather than analytical only because a numerical Fourier transform is used and

because the eigenvalues and eigenvectors of the linear system are found numerically. The

time integration can be solved analytically without the need for a numerical integration

in time. To eliminate the constraints in (57)–(58), we use a Helmholtz decomposition to

replace ub and u0 by streamfunction and velocity potential variables. In other words, rather

than using (55)–(56) directly, we use the divergence and curl of (55)–(56), written in terms

of streamfunction and velocity potential.

The second part of the splitting is the stochastic representation of turbulent advection–

diffusion from (29) and (46),

∂qf
∂t

= bq∇2qf +DfẆf , (59)

∂qtb
∂t

= bq∇2qtb +DbẆb, (60)

which evolves qf and qtb while holding all other variables fixed. For this part of the evolution,

a Fourier transform is used, and (59)–(60) becomes a system of independent Ornstein–

Uhlenbeck processes that can be solved analytically [21, 63].

Lastly, the third part of the splitting includes all of the other terms in the system, which

are mostly interactive source/sink terms such as radiation, etc., and which are a system of

ordinary differential equations (ODEs) at each (x, y) location. As a numerical integration
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scheme, the forward Euler method was used, in line with the first-order splitting scheme.

This method offers computational efficiency, which is advantageous for the present goal of

long-time simulations of climate.

The domain size here is 10,000 km in the zonal (x) direction and 400 km in the merid-

ional (y) direction. These choices allow the model to represent one branch of the global

Walker circulation, such as the circulation cell over the Pacific ocean, and also to repre-

sent mesoscale convective systems as stochastic cloud clusters. Doubly periodic boundary

conditions are used in the x and y directions. Alternatively, another reasonable choice for

boundary conditions could be a channel domain with boundaries at the north and south

edges of the domain. One disadvantage of channel boundaries is that the simulation fea-

tures may be influenced by the boundaries, and the region near the boundary may need to

be neglected when calculating statistics. For this reason, periodic boundary conditions can

be desirable instead, since the statistics are homogeneous in space and are not influenced by

any boundaries. The grid spacing is ∆x = ∆y = 5 km, which is chosen to be the same as

in earlier studies with spatiotemporal stochastic models for clouds [21, 22]. The time step is

∆t = 1 minute, and it is chosen to resolve all time scales involved in the system, including

wave oscillation time scales and physical parameterization time scales. As a brief summary

of the analysis of all such time scales, it is the wave oscillations that are the limiting factor,

or possibly eddy diffusion if the eddy diffusivity is large. The wave propagation speed of

the first baroclinic mode (u1, θ1) is roughly cwave ≈ 50 m/s, so that the time step should

be smaller than roughly ∆x/cwave ≈ 100 s. With such a time step, to simulate 2 years of

weather and climate evolution will require roughly 106 time steps.

The initial conditions are chosen to be near a climate equilbrium state, in order to help

reach a statistical equilibrium with a minimal amount of transient spin-up time. The initial

guess for a climate equilibrium state is based on an earlier version of the model [36] which was

spatially uniform. In particular, the spatially uniform component of the initial conditions

is To = 300 K, Tb = 290 K, Tf = 265 K, qf = 10 mm, and qtb = 25 mm, and other

variables are either derived from these or are set to zero. On top of this spatially uniform

component is a spatially varying perturbation, which helps to initiate waves, cloud clusters,

and other weather fluctuations. The spatially varying perturbations were chosen with large-

scale wavelengths in both the x and y directions, and with randomly selected amplitudes.

For the ocean temperature, the spatially varying perturbation was chosen to have a form
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that is similar to the prescribed ocean heat transport/forcing term, Fmerid,o(x).

The computer code used here is written in the Fortran programming language, and it is

parallelized using message passing interface (MPI). It is based on an earlier parallel code that

solves the stochastic heat equation or the quasi-geostrophic (QG) equations using domain

decomposition [64].

Spatiotemporal white noise terms, of the form DẆ (x, y, t) with strength parameter D,

are included in (59)–(60). For a continuum model, it is well-known that the stochastic heat

equation with spatiotemporal white noise forcing will not generate an evolution with finite

variance in two spatial dimensions; as a result, to obtain an evolution with finite variance,

Ẇ (x, y, t) must be regularized or discretized. Here we discretize DẆ (x, y, t) in the natural

way as D̃Ẇij(t), which is an independent white noise at each grid point (xi, yj), and where

D̃ = D/(∆x∆y)1/2. By scaling D̃ with factors of ∆x1/2 and ∆y1/2, the covariance of D̃Ẇij(t)

will approximate the covariance of DẆ (x, y, t).

III. NUMERICAL SIMULATIONS

Numerical simulations are now presented to investigate the level of realism in the idealized

climate system and changes under global warming. The standard parameter values used

here are listed above in Tables I–IV, and other aspects of the setup of the simulations were

described above in section II E.

The mean climate state is illustrated in Fig. 7. The simulation was run for 10 years,

and the first 7 years involve a transient spin-up period, followed by the final 3 years that

are in an approximate statistical equilibrium. By calculating time averages over the final 3

years, the mean climate state in Fig. 7 is obtained. First, in Fig. 7A, the ocean temperature

is shown, and it illustrates the warm pool in the western side of the domain and the cold

pool in the eastern side of the domain, which arises from the model’s meridional ocean

heat transport and is an idealization of the sea surface temperature distribution of the

tropical/subtropical Pacific Ocean. The other features of the mean climate state are also in

the form of idealizations of the tropical/subtropical Pacific Ocean climate, with a western

warm pool region that has excess moisture and deep convection, and an eastern cold pool

region that has a dearth of moisture and deep convection. In more detail, some of the

values are in reasonable agreement with nature, such as warm-pool ocean temperatures
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FIG. 7. The mean climate state (i.e., time-averaged quantities) from the simulation with standard

parameters. (A) Ocean temperature. (B) Shallow cloud fraction, from boundary-layer cloud in-

dicator, σb. (C) Deep convective cloud fraction, from free-tropospheric cloud indicator, σf . (D)

Column water vapor, from summation of qtb and qf .

of roughly 300 K and column water vapor of roughly 65 mm (see, e.g., Ref. 55). On

the other hand, some values are not in agreement with nature, such as the large value

for shallow cloud fraction1 of 0.8 in the warm pool region, and they could indicate aspects

where parameter changes or parameterization changes would be beneficial. For shallow cloud

fraction in Fig. 7B, the eastern cold pool region has a cloud fraction of roughly 0.95 and is

an idealization of a stratocumulus cloud deck. In summary, the simulation displays some of

the basic features of the tropical/subtropical Pacific Ocean climate, in idealized form.

Cloud structures are illustrated in white color in Fig. 8. Two example snapshots are

shown, at times of 8 years and 10 years, for each of the two cloud indicators: the boundary-

1 Note that the model’s cloud indicator quantity σb may differ from the shallow cloud or low cloud indicators

that are often presented in analyses of observational data, since σb could be activated here even when a deep

convective cloud is simultaneously present, which is a scenario that would be labeled as deep convective

rather than low cloud in some observational analyses. Hence σb here could provide an overestimate of low

cloud amount. 27



layer cloud indicator, σb, in panels A and B, and the free-tropospheric (deep) cloud indicator,

σf , in panels C and D. In order to fit the plots on the page in a way that illustrates the

cloud structures, the domain has been rotated counterclockwise by 90◦. As a result, the top

of the page is the location of the eastern cold pool region, and the bottom of the page is the

location of the western warm pool region.

The shallow clouds cover almost the entire eastern cold pool region (top of the page) in

Fig. 8A,B. This is an idealization of a stratocumulus cloud deck, as in earlier versions of

spatiotemporal stochastic cloud models for shallow clouds [22]. The shallow clouds dissipate

and break up over many portions of the western warm pool (bottom of the page), where

many regions are black in color, indicative of the ocean surface and the absence of clouds.

The shallow cloud fraction in the warm pool region is larger here in this idealized climate

system than in nature, as mentioned above along with a caveat about comparisons with

observational analyses, and the cloud fraction could change depending on various factors.

Overall, these snapshots illustrate that the model framework is able to produce spatiotem-

poral variations in shallow clouds, and also in the regional extents of shallow cloud coverage.

Cloud clusters of various sizes can be seen in the deep convective cloud indicator σf

in Fig. 8C,D. While deep convection is most active over the western warm pool region

(bottom half of page), deep convective clouds can occur intermittently in the eastern cold

pool region as well (top half of the page), although they are rare enough that the average

deep convective cloud fraction is nearly zero over the eastern cold pool (Fig. 7C). The sizes of

the cloud clusters can vary substantially, as in earlier versions of spatiotemporal stochastic

cloud models [21] and observational data [65]. Many clusters have small length scales of

roughly O(10) km, whereas a few clusters have large length scales of roughly O(100) km and

extend over a large portion of the 400-km span of the domain in the meridional direction.

This ability to represent cloud clusters is one of the advantageous features of the present

model framework, in comparison to other models, such as traditional GCMs, that require a

larger grid spacing to simulate climate over planetary scales.

The interannual variability is illustrated by the space–time evolution plot in Fig. 9. The

same model variables as in Fig. 7 are plotted, and they are plotted for the last two years of

the simulation, with all variables averaged over the meridional (y) direction. From this plot,

one can see that the climate state is not a fixed, steady equilibrium state but a statistical

equilibrium with variability and dynamic evolution. For instance, in panel A, the ocean
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FIG. 8. Snapshots of (A,B) shallow clouds and (C,D) deep convective clouds. Two snapshots are

shown for each quantity, one at the time of 8 years and one at the time of 10 years. White color

indicates the presence of cloud, and black color indicates the absence of cloud. The domain has

been rotated counterclockwise by 90◦ to fit on the page, and the western warm pool region appears

in the bottom and the eastern cold pool region appears on the top.
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FIG. 9. Space-and-time evolution plot of model variables (meridionally-averaged) from the simu-

lation with standard parameters during the last two years: (A) Ocean temperature. (B) Shallow

cloud fraction. (C) Deep convective cloud fraction. (D) Total column water vapor.

temperature To has fluctuations in time, including fluctuations within the warm-pool region

in the western side of the domain. The other variables (in panels A, B, and C) also have

substantial fluctuations, including fluctuations in cloud fraction that cover the full range of
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values from 0 to 1.

Next, a climate-change experiment is performed to investigate the sensitivity of temper-

ature and clouds to an increase of carbon dioxide content. We set up a scenario of enhanced

carbon dioxide by increasing the longwave absorptivity of both the boundary layer and free

troposphere, following Ref. 36. Specifically, the absorptivity parameters a0lb and a0lf were

increased by a factor of 1.2 to bring them to their new values of a0lb = 0.288 and a0lf = 0.48.

All other parameters were left unchanged, and a new simulation was run with the same

setup as the standard simulation.

FIG. 10. The mean climate state (i.e., time-averaged quantities), as in Fig. 7, except from the

climate-change simulation with enhanced longwave absorptivity parameters a0lb = 0.288 and a0lf =

0.48. The climate state here has an expanded warm pool region in the western part of the domain,

associated with more deep convection (panel C) and more moisture (panel D) in comparison to the

standard simulation in Fig. 7.

In the climate-change simulation, the mean climate state has changed in several ways,

as illustrated in Fig. 10. Broadly speaking, figure panels A and C show that with increased

carbon dioxide concentration, we would have a warmer ocean and more moisture in the
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warm-pool region, in comparison to the standard simulation from Fig. 7. For instance, the

ocean temperature over the warm pool increased from 300 K to 304 K, and the maximum

value of column water vapor has increased from roughly 65 to roughly 70 mm.

The deep convection also undergoes substantial changes in the climate-change simula-

tion. In Fig. 10C a larger cloud fraction of 0.4 is seen over the warm pool, in comparison

to 0.3 in the standard simulation, which indicates that deep convection is more common.

Furthermore, the region of deep convection has expanded significantly in its area; in the

climate-change simulation in Fig. 10C, the region where time-averaged σf > 0.3 is roughly

40% of the domain, in comparison to roughly 10 to 20% of the domain in the standard sim-

ulation in Fig. 7C. While the deep convective patterns change, the circulation did not show

any substantial change between the standard and climate-change scenarios, which is consis-

tent with the mixture of evidence from nature of small or inconclusive changes [13, 66, 67].

Another interesting change is that deep convection is now forming everywhere in the domain

in the climate-change simulation, since the time-averaged σf is greater than 0.1 essentially

everywhere in Fig. 10C, whereas a region of essentially zero deep convection could be seen

within the cold pool region in Fig. 7C in the standard simulation.

Meridional averages—i.e., averages over the y coordinate—are shown in Fig. 11 for com-

parison of the mean climate states of both the standard parameter simulation and climate-

change simulation. In Fig. 11A and D, one can see that the ocean is warmer and the

atmosphere is more moist in the climate-change scenario. Also, the enhancement of deep

convection over both the warm pool and cold pool is shown in Fig. 11B, while the shallow

cloud fraction decreased globally at the same time. In the climate-change scenario, the

shallow cloud fraction decreased, which decreases the cooling effect of shallow clouds (by

allowing more solar radiation to reach the boundary layer), and is consistent with a warming

of the boundary layer and ocean temperature.

As another comparison, Fig. 12 shows time series of domain-averaged quantities from both

the standard simulation and the climate-change simulation. The domain-averaged quantities

shown are (A) ocean temperature, (B) boundary-layer temperature, (C) free-tropospheric

temperature, (D) shallow cloud fraction, and (E) deep convective cloud fraction. The most

substantial difference between the two simulations is a large global warming in the ocean and

boundary layer temperatures. The free-tropospheric temperature is slightly colder in the

climate-change simulation, although the difference is small; it could be due to the simplistic
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treatment here of radiation and in particular cloud feedbacks and would be interesting

to investigate further in the future. Deep convection is more active, as also mentioned

above, and the shallow cloud fraction, on the other hand, has decreased. Hence the model

simulations show some of the basic feedbacks involved in climate change. In addition, the

model framework includes substantial fluctuations in time, and the system is not in a fixed

equilibrium state but in a statistical equilbrium.
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FIG. 11. Mean climate states in the standard simulation versus climate-change scenario, presented

as functions of the zonal coordinate x after a time-average and meridional-average. (A) ocean

temperature, (B) shallow cloud fraction, (C) deep cloud fraciton, (D) column water vapor.
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Finally, we explore parameter space and assess the sensitivity to the two cloud albedos,

Ab and Af . To do so, we run several simulations under the standard parameters, except with

modified values of the shallow cloud albedo Ab±∆Ab and deep convective albedo Af±∆Af ,

with adjustment values of ∆Ab and ∆Af both equal to 0.05. For each single simulation

experiment, we only modified one of these parameters. All simulations were run for 3 years

with the first year to reach an approximate statistical equilibrium and the last 2 years to

collect time-averaged data. The time-averaged data were further meridionally-averaged and

are shown in Fig. 13. The first three panels show the influence on temperatures, panel D

shows the change of moisture, while the last two panels E and F present changes in the cloud

fractions. From this plot, one can see that the broad features are essentially the same in the

standard case and the sensitivity studies, in terms of the positive versus negative anomalies

in the western versus eastern sides of the domain (or vice versa). One can also see some

differences arising, such as a greater sensitivity to shallow cloud albedo perturbation ∆Ab

rather than deep cloud albedo perturbation ∆Af , and a greater sensitivity to the positive

perturbation +∆Ab than the negative perturbation −∆Ab in the eastern half of the domain.

The greater sensitivity to shallow cloud albedo is reminiscent of studies that have identified

the key role of shallow clouds in climate sensitivity and uncertainties in climate models [6, 7].

35



0 2000 4000 6000 8000 10000
280

290

300

310
T

o
(K

)

A. Ocean temperature

standard

A
b
 +  A

b

A
b
 -  A

b

A
f
 +  A

f

A
f
 -  A

f

0 2000 4000 6000 8000 10000
270

280

290

300

T
b
(K

)

B. Boundary layer temperature

standard

A
b
 +  A

b

A
b
 -  A

b

A
f
 +  A

f

A
f
 -  A

f

0 2000 4000 6000 8000 10000
260

265

270

T
f(K

)

C. Free troposphere temperature

standard

A
b
 +  A

b

A
b
 -  A

b

A
f
 +  A

f

A
f
 -  A

f

0 2000 4000 6000 8000 10000
20

40

60

80

q
b
+

q
f(m

m
)

D. Column water vapor

standard

A
b
 +  A

b

A
b
 -  A

b

A
f
 +  A

f

A
f
 -  A

f

0 2000 4000 6000 8000 10000
0.7

0.8

0.9

1

b

E. Shallow cloud fraction

standard

A
b
 +  A

b

A
b
 -  A

b

A
f
 +  A

f

A
f
 -  A

f

0 2000 4000 6000 8000 10000

x (km)

0

0.2

0.4

f

F. Deep cloud fraction

standard

A
b
 +  A

b

A
b
 -  A

b

A
f
 +  A

f

A
f
 -  A

f

FIG. 13. Sensitive study involving the two cloud albedo parameters Ab and Af . Statistics of model

variables are time-averaged and meridionally-averaged. Solid lines show the simulation result with

standard parameters, dashed lines show results under modification ±∆Ab of the shallow cloud

albedo, and dash–dot lines show results under modification ±∆Af of the deep convective cloud

albedo. The adjustment values are ∆Ab = ∆Af = 0.05.
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IV. CONCLUDING DISCUSSION

A modeling framework was investigated here for the possibility of idealized climate sim-

ulations with individual clouds and stratocumulus clouds on planetary-scale domains. To

achieve computational efficiency, the clouds are modeled stochastically, and simplified ver-

tical structures are assumed to reduce the number of gridded spatial dimensions from three

to two. The basic structure of the model is a combination of a large-scale fluid dynamics

model that resolves weather/climate variability but not individual cloud circulations, and

spatiotemporal stochastic models for smaller-scale turbulent advection–diffusion of water

vapor and clouds.

Numerical simulations were presented to test whether an idealized climate state can be

generated with evolving and interactive clouds. The basic regional differences were seen in

different cloud types, including a warm pool region with a higher level of deep convection

and a cold pool region with a lower level of deep convection and an expansive stratocumulus

cloud deck. Individual clouds can form and decay and have different lifetimes and sizes, and

the climate state is not a fixed equilibrium state but a dynamic evolution in a statistical

equilibrium.

It would be interesting in the future to consider additional processes in the model, to

potentially bring in an even higher level of realism. For example, upper tropospheric clouds

such as stratiform or cirrus or anvil clouds have their own distinctive radiative effects which

can influence the climate, and they were not included here but could be added in the future.

In the boundary layer as well as the free troposphere, nonlinear advection of moisture was

not included here but could be added for further realism. Also, by including a more complex

treatment of deep convection or ocean dynamics, it may be possible to include additional

aspects of climate variability such as convectively coupled equatorial waves (CCEWs), the

Madden–Julian oscillation (MJO), and the El Niño–Southern Oscillation (ENSO).

A benefit of simplified models is that it is relatively easy for different physical processes

to be included, excluded, or modified, and the impact can be measured. In the present

paper, several sensitivities were explored, including changes to cloud albedo and their impact

on cloud–radiative feedbacks. In the different sensitivity studies here, the climate-scale

circulations showed minimal sensitivity, and it would be interesting in the future to explore

their sensitivity to other processes. For instance, in addition to the other processes mentioned
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in the previous paragraph, it would also be interesting to consider different formulations of

the stochastic clouds, such as stochastic entrainment or additional cloud types.

Given that the simulations displayed some of the basic features of climate-change sce-

narios, it would also be interesting in the future to investigate questions about individual

clouds, their statistics, and global warming. For example, in this model framework, it is

not only bulk averaged cloud properties (such as area fractions) that are available, but

also individual cloud properties such as lifetimes and areas. It is then possible to examine

cloud–radiative feedback processes related to these individual cloud properties. As another

example, extreme events can be quantified in this model framework in terms of cloud cluster

areas or rain event sizes. It would be interesting to investigate changes in extreme events in

this model under different global warming scenarios.
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